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On the Hamiltonian structure of the spin
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Abstract. The Hamiltonian structure of the spin generalization of the rational Ruijsenaars—
Schneider model is found by using the Hamiltonian reduction technique. It is shown that the
model possesses current algebra symmetry. The possibility of generalizing the obtained Poisson
structure to the trigonometric case is discussed and degeneration to the Euler—Calogero—Moser
system is examined.

1. Introduction

Recently a spin generalization [1] of the elliptic Ruijsenaars—Schneider model [2, 3] (spin
RS model) was introduced as a dynamical system describing the pole evolution of the
elliptic solutions of the non-Abelian two-dimensional (2D) Toda cRairEquations of
motion proposed for the model generalize the ones for the Euler—Calogero—Moser (ECM)
system [5-9], which is an integrable systemidfarticles with internal degrees of freedom
interacting by a special pairwise potential.

An important tool for dealing with classical integrable systems and especially for
guantizing them is the Hamiltonian formalism. Although equations of motion defining the
spin RS model can be integrated in terms of Riemann theta-functions, the question about
their Hamiltonian form remains open. The aim of the present paper is to give a partial
answer to this question, which lies in constructing the explicit Hamiltonian formulation for
the rational spin RS model.

Our construction is based on the Hamiltonian reduction procedure acknowledged as the
unifying approach to dynamical systems of Calogero or Ruijsenaars type [10-19]. In this
approach one starts with a large initial phase space and a simple Hamiltonian possessing
a symmetry group. By then factorizing the corresponding motion by this symmetry one is
left with a non-trivial dynamical system defined on a reduced phase space. In particular,
the rational RS model and the trigonometric Calogero—Moser system appear in this way if
one uses the cotangent bundl&éG over a Lie groupG as the initial phase space [12].

A natural generalization of this approach allowing us to include spin variables consists
in replacingT*G by a more general phase sp&édhat we choose to b&*G x J*, where
J* is a dual space to the Lie algehfaof G. Considering or? a special HamiltoniariH
and performing the Hamiltonian reduction lgi+action, we obtain the Poisson structure of
the rational spin RS model.

1 E-mail address: arut@genesis.mi.ras.ru

1 E-mail address: frolov@genesis.mi.ras.ru
§ The trigonometric spin RS model can also be related to affine Toda solitons [4].
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Let us briefly describe the content of the paper and the results obtained. For simplicity,
we restrict ourselves to the case 6f = GL(N,C). In section 2 we define o two
dynamical systems governed by Hamiltonids and Hz and show that the corresponding
integrals of motion combine into generators of the Yangian, and the current algebra,
respectively. Since all these integrals are gauge-invariant, the corresponding symmetries
will survive after the reduction.

As is known [14] the dynamical system on the reduced phase space corresponding to
H¢ is the trigonometric ECM model. This immediately reproduces the result found in [7, 8]
that the model possesses Yangian symmetry.

Section 3 is devoted to the rational spin RS model. First, we introdiszevariant spin
variables that after solving the moment map equation can be identified with coordinates on
the reduced phase spafe. Equations of motion for dynamical variables Bf produced
by Hy coincide with the ones introduced in [1] for the rational case. That is the way we
obtain an explicit Hamiltonian formulation of the spin RS model. The Poisson structure of
the model is found to be rather non-trivial and admits at least two equivalent descriptions in
terms of different phase variables. Moreover, it depends on a paramétEng a coupling
constant of the model.

It turns out that the spin RS model admits a (spectral-independenf)erator (Lax
matrix) that satisfies the sanieoperator algebra as does the corresponding spinless model.
We also show that the Hamiltonian reduction provides an alternative way of solving
equations of motion without using spectral curves. A similar method of integrating equations
of motion of the spin RS model is used in [20].

Finally, we present an explicit expression for generators of the current algebra via phase
variables of the spin RS model and define the gauge-invariant momentum variables.

In section 4 degeneration of the rational spin RS model to the ECM system is examined.
An interesting feature we come across here is the appearance of spin variables obeying the
defining relations of the Frobenius Lie algebra. We observe that the general elliptic ECM
system can also be formulated in terms of Frobenius spin variables.

2. Current and Yangian symmetries

In this section we construct representations of the Yangian and current algebras related to the
cotangent bundl&*G over the matrix grougz = GL(N, C) and describe their connection
to the ECM and the spin RS models respectively.

Consider the following manifold®® = T*G x G*, whereG* is a dual space to the Lie
algebrag = Mat(N, C) of G. Due to the isomorphisng* ~ G we can parametrize an
element fromG* by a matrixS € G. The spacel'*G is naturally isomorphic t@* x G
and we parametrize it by paifsi, g), whereA € G andg € G. The algebra of regular
functions onP is supplied with a Poisson structure, which can be written in terms of the
variables(A, g, S) as follows

{A1, A2} = 3[C, A1 — AJ] (2.1)
{A1, g2} = 2C {g1,. 82} =0 (2.2)
{81, g2} = {81, A2} =0 (2.3)
{S1, 82} = —3[C, 81— 2] (2.4)

where we use standard tensor notation éng } ; ; E;; ® E;; is the permutation operator.
The Poisson structure is invariant under the following action of the g@up

A — hAR™! g — hgh™t S — hSh~1 (2.5)
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and so we refer to (2.5) as gauge transformations. The moment map of this action is of the
form

nw=gAg 1 —A+S. (2.6)

The simplest gauge-invariant Hamiltonians #fe = tr A> and Hgy = trg.
The Poisson bracket of the variabl§s can be realized by usingA2 [-dimensional
vectorsa;, b; which form/N-pairs of canonically conjugated variables

{a?, b}y = —8;;8°

1

wherei, j =1,...,N anda, 8 =1,...,1. Supposing the matrix elements &fare
S =Y a'bt (2.7)

one recovers the Poisson bracket (2.4). Obviously, under gauge transformations the variables
a andb transform in the following way

a® — ha® b* — b*ht

where we regard® as a column anéd“ as a row.

The variables andb allow one to construct a lot of gauge-invariants Poisson commuting
with Hc or with Hg.

First, we consider a family of integrals of motion féf.: I¥° = tr A"S*f, where for
any « and g the matrix S%¢ has the entries; = a?b?. In fact, the integralg, form
a representation of the classical Yangian. To see this, one can introduce the following
generating functio*?(z) of I,

T (z) =8 +tr - _1A 5o
then, by using the Poisson bracket for the varialsigs
{877, 85"} = Crp(8P 55" — 8547
and performing simple calculations, one obtains the Yangian algebra
{T1(2), To(w)} = [r(z — w), Ti(2) T2(w)]. (2.8)

Here we regard’'(z) as an(l x I)-matrix with entriesT*?(z), andr(z — w) is a rational
solution of the classical Yang—Baxter equation

rz—w)=——
Z—w
whereK is the permutation operator acting @ ® C'.
A well known property of the Yangian is the existence of the involutive subalgebra
generated by (z) = tr T ().
For the HamiltonianHr one can choose the following family of integrals of motion
I = tr g"S*#. Introducing the formal generating functioh(z)
[e¢]
JPy= Y gt

n=—0o0

one can easily show that(z) satisfies the current algebra relations

Z
w

(1(2), o(w)) = [K, Jz(w)]5< ) 2.9
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(=12 ()

is the formals-function.
It is obvious that tt/ (z)" are central elements of the current algebra. In addition, the
current algebra admits an involutive family of integrals of motion polynomiag iand S.
It is constructed ag, (z) = tr J™(2)", whereJ " (z) = Y o2 J,z"~1. The involutivity is
a consequence of the algebra satisfied/byz)

(U @), I (w)} =[rz — w), J] (2) + J5 (w)] (2.10)

and it is well known that the Yangian (2.8) is a deformation of (2.10).

The dynamical systems governed by the Hamiltonidlasand Hy are trivial. However,
factorizing the initial phase spade by the action of a symmetry group, one obtains non-
trivial systems defined on the reduced phase s@acén particular, to obtain the ECM and
the spin RS models one should fix the moment map as [21]

gAg t—A+S=yI (2.11)

wherey is a complex number being identified with a coupling constant. Then by solving
this equation modulo the action of the gauge greupG coincides with the isotropy group

of (2.11), i.e. (2.11) is a set of first-class constraints), one obtains the reduced phase space.
The dynamical systems dB, corresponding to the Hamiltoniarté- and Hy are identified

with the ECM, and the spin RS models, respectively.

Since the generators of the Yangian and current algebras are gauge-invariant, we
conclude that the ECM model possesses Yangian symmetry whereas the spin RS model
has current symmetry. As was mentioned in the introduction this result for the ECM model
was obtained in [7, 8] by exploiting an explidit-operator describing the model.

where

3. Rational spin RS model

In this section we present the Hamiltonian formulation of the spin RS model by considering
the reduction of the phase spaPeby the action ofG. Given the moment map, the space
of functions on the reduced phase spaecan be identified with the space FUR of
G-invariant functions or restricted to the surface (2.11) of the constant moment level. A
choice of an appropriate basis in Fid and calculation of the induced Poisson structure
make the description dP, explicit.

To construct a basis in FG® we first note that any semisimple elementgtan be
diagonalized by a gauge transformation

A=TQT™ ! (3.12)

where Q is a diagonal matrix with gauge-invariant entrigs# ¢;. By using the action of
the Weyl group we fix the order af;. For a givenA, the matrix7 in (3.12) is uniquely
defined by being an element of the Frobenius group, i.e. it satisfies the condition

Te=¢e (3.13)

wheree is an N-dimensional column with alk; = 1. Such a choice fof" is known [16]
to be relevant for the description of the RS model.

Given A andg, we can diagonalize a matri¥’ = gAg~1 = U QU ~* with the help of an
elementU such thatle = e. This introduces a useful parametrization forg = UPT 1,
where P is some diagonal matrix.



Hamiltonian structure of the Ruijsenaars—Schneider model 4207

Under gauge transformation (2.5) matricEsand U transform as follows tol' —
hTh[T] and U — hUR[U] where h[T] and h[U] are the diagonal matrices[T]; =
(T h~te); andh[U]; = (U th~te);.

We next introduce the diagonal matricgs= #;6;; andu;; = u;5;; with entries

=Y (T™"a%) ui =y (U 'a%; (3.14)
which transform under gauge transformation (2.5) in the following way

t — h[T]i_lt,- u; —> h[U]i_lu,-
and we use to define theG-invariant spin variables

a¥ =171 (T %), ¢ =t;(b"UP);.

Note thata? are not arbitrary but satisfy the constraidts, a? = 1 for anyi. The relevance
of this definition will be clarified later.

To calculate the Poisson algebrasfindc one needs to use the one f@r, U, P, Q)-
variables. In [16] it was proved that the standard Poisson structure (2.1) and (2Z2)Gon
rewritten in terms of(T, U, P, Q)-variables has the form

{T1, T2} = T1Tor12 (U1, Uz} = —U1Uar12 (3.15)

{T1, P2} = ThPor1n {U1, Po} = U1 Poryp (3.16)

{T1, Q2} = {U1, Q2} ={P1, P2} ={T1, U2} =0 (3.17)

{01, 02} =0 {Q1. P2} =P, ) E;i ® Ej;. (3.18)

Herery, is an N-parametric solution of the classical Yang—Baxter equation

1

ri2 = Z fFij ® Fji (3.19)
i#j 1

whereF;; = E;; — E;; is a basis of the Frobenius Lie algebra and the maigiis given by
_ 1

o= = F; ® Ej;. (3:20)
i# 1

Note that (3.18) implies tha}; and p; = log P; are canonically conjugated variables.
With formulae (3.15)—(3.18) to hand we first calculate

1 1
) =——@—1%  {wu)= =@ —u)®>  {t,u;}=0
qij qij
and then the Poisson brackets of the invariant spins

1
{a], af} = —(af‘af + a;‘af} — af‘af — aj‘af) (3.22)
qij
1
{ci’s Cl,'s} = —(C?Cf + c;?‘cf) + Ciji — Ljjcf (3.22)
’ qij
1
(¢, al} =8 L;; —alLj; + —c(af — a) (3.23)
ij :
1
{af. 'y = =8’ Lij + a? Lij + —cf (a? — a!). (3.24)
T 4ij

The Poisson structure of invariant spins is not closed since it involves another gauge invariant
objectL : L;; = t7*L;;t;, whereL = T~'gT. In [16] L was identified with the.-operator



4208 G E Arutyunov ad S A Folov

of the rational RS model. Analogously; will be called theL-operator of the spin RS
model. The relevance of this definition will be justified later. Note that in equations (3.21)—
(3.24) and in later formulae it is assumed that if some denominator becomes zero, the
corresponding fraction is omitted.

Calculating the Poisson algebra fdr with the help of equations (3.15)—(3.18), we
obtain that it coincides with the one fdr, namely

{L1, Lo} = ripL1Ly + L1 Lof13 + L1 Ly — LoioLy (3.25)

where 71 = Fri2 — o1 — r12 IS a constant solution of the Gervais—Neveu—Felder
equation [21,22]. Therefore, the-operator algebra for the spin RS model and the one
for the RS model without spins are the same.

To complete the description of the Poisson algebra of invariant spins we find the Poisson
brackets ofL with a andec:

1 1 1
{af, Ly} = —(af —af)Ly — —(af —af)Ly — —(af —a;') Ly (3.26)
qik qik qil
{¢i, Ly} = —c/Lyy+ —c/ Ly — —c;{ Ly + —c; Ly + Lj; Ly — Ly Ly. (3.27)
qil qil qik qik

Thus, the Poisson algebra of gauge-invariant variablesand L is closed.

We remark that the choice of gauge-invariant spins andltfuperator is not unique.
In particular, one could uses; = )  (b*T); to define other gauge-invariant spins
a* = w;(T~%%);, & = w *(b*UP); and theL-operator: L;; = w;L;jw;*. One can
verify that this set of gauge-invariant variables satisfies a different algebra.

The next step consists in restricting the Poisson algebra (3.21)—(3.27) to the surface
(2.11) of the constant moment level. Diagonalizing the variadle we find that
equation (2.11) is equivalent to

LQO—-QL—yL=-T71STL. (3.28)

Multiplying (3.28) by the diagonal matrix from the right and byr—* from the left, and
taking into account thal. = T~1gT = T-UP, we rewrite (3.28) in terms of gauge-
invariant variables

LO—-QL—-yL=—tT"1supPt (3.29)

since(t~1T-1SUP); =Y, aicj. Thus, we can solve equation (3.29) with respecLto
The solution is given by
fij
L= E;; (3.30)
XJ: gij+y "
where we introducef;; = ), afc?. Now the reduction of the Poisson structure (3.21)—
(3.27) on the surface of (3.28) amounts to the substitution on the right-hand side of (3.21)—
(3.27) of the entries of thd.-operator (3.30). The consistency of the reduced Poisson
structure can also be checked by direct calculations. To this end one must first find the
Poisson algebra of;;-variables

1 1 1 1 1
{(fij, ful=\—+—+—+— ) fisfut+t|—+ Jij fu
qik 491 Qi qii Qi qutV

+(1+1+ 1 1 )ff +(1
—+ — - il Jxj — =
qik 41 Qi tY qutVy ! qgjk g1tV

+(1 1 )ff +(1+ 1 )ff (3.32)
ai  a+v) T\ g+ )M '

) fij fin
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and{f;, qx} = — fi;j6rj. Then by using the representation (3.30) forone does recover
the L-operator algebra (3.25).

Now we proceed with describing the dynamics Bn The invariant HamiltoniarHg
acquires onP, a form Hg = trL = (1/y))_; fu. This Hamiltonian and the Poisson
structure orP, produce the following equations of motion

1

gi = Lii = — fii (3.32)
Y

oo 1 o o l o o

ay = —Z;@- —af)Ly == > (af —a¥) fi;V(gip) (3.33)

7 dii i
07 1 o o 1 o o
¢ = Z ;(Ci Lij+ciLy) = " Z(C,- fiiV(qij) — ¢ fiiVig;))  (3.34)
i i e

where we introduce the potenti&(g;;) = 1/(¢;;) — 1/(¢;; + y). Differentiating¢; and
taking into account equations (3.33) and (3.34), one gets

. 1 1 1
gi = ZZ —LijLji = ZZ —LijLji = — Z Sij fii(V(gij) — V(g;i)) (3.35)
J#i qij J#i qij 4 J#E
and equations of motion fof;;
. 1
fi == Vi) fufii — V@i fix fig + V@) fi fii = V(@) Fie fis- (3.36)
ki, j

It follows from equations (3.32) and (3.36) that the equation of motiorfaan be written
in the Lax formL = [L, M] with M = Zi#(l/q,»j)Lj,-Ej. However, this equation is
not equivalent to equations (3.32) and (3.36).

In paper [1] the spin generalization of the elliptic RS model was introduced. The
generalized model is a system of particles with coordinateg;, each particle having
internal degrees of freedom described by Mutmensional vectory and the/-dimensional
vectorc?. The equations of motion generalize the ones for the ECM system

gi = Z fij i (Vi(gij) — V(g;i) (3.37)
T
a; = Zajfijv(clij) — Aia; (3.38)
7
¢ =— Z ¢; ;i V(gji) + Aici (3.39)
J#i

whereV(q) = ¢(q) — ¢(g + y) andx;(¢z) are arbitrary functions of and¢(g) denotes the
Weierstrass zeta-function. Equations of motion (3.37)—(3.39) are invariant under rescaling

1
a; — kia; ci —> —Cj.

ki
Introducing the invariant variable’ = (3_, a%)~ta® andé® = (3_, a¥)c?, and calculating
from (3.38) and (3.39) the equations of motion &grandc¢, one discovers that all; drop
out and the equations of motion coincide with (3.33) and (3.34) with the chéhge a?,
¢¥ — (1/y)c and with substitution oV (¢) for its rational analogu€l/q — 1/(q + y)).
To present equations (3.37) in the Lax form, in paper [1] a spectral-depeneenérator
L(z) was suggested. One can see that in the rational E&secoincides withL in the
limit z — oco. Thus, we obtain the Hamiltonian formulation of the spin generalization of
the rational RS model.
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Now we show how the equations of motion (3.35)—(3.34) can be solved in terms of the
factorization problem (see also [2,11, 20]). The Hamiltonig induces onP equations
of motion

¢=0 A=g §$=0
that can be easily integrated;(r) = gr + Ap, g(#) = constant ands(+) = constant. We
suppose that the positions of particlesrat 0 are given byg; lying on P,. It means that
A(t) = gt + Q. Since for anyr the point(A(z), g(¢), S(t)) satisfies the constraint (2.11)
one finds thak should be identified with thé-operatorLy atz = 0.
Let us now show that the solution of (3.35) is given by the diagonal fa@i@y in the
decomposition ofA(r)

A)=Lot+ 0 =THOMNT 1) T(f)e =e. (3.40)
In [16] it is proved that
8T;; 1 _ _
_(SA = Z _(Tla T"j Taml + Tij Tml T}ml) (341)
mn a#j 1ja
I (3.42)
SAmn

Using these formulae, we find

. 8q, dAmn _1
=) M = (T (1) = Lit
q 5A, di (T "gT)ii(1) )

mn

and differentiating; once again, one gets

qi = Lii = [TﬁlgT, TﬁlT]ii (343)
where
1a 1 1
(T T)ij = __Lij+8ijZ_Lja- (344)
qij aztj dia

Substituting equation (3.44) into equation (3.43), we obtain equation (3.35).
As to the spin variables their equations of motion are automatically solved if one knows
the factor7 (¢) in the decomposition (3.40). Indeed, if we defiifet) = (T ~1(t)a%); then

a. = — Z _(&Irx — Zl}'\{)L,‘j
i i
and for the invariant spin = (1/1;)a we obtain equation (3.33). Solution of the equation
of motion for ¢! is given bycf (t) = #; () (b* LoT (t));.
The integrals of motio? = tr(g" S*#) introduced in section 2 take d®. the following
form

JP =3 (LY alel.
ij
Substituting here the explicit form (3.30) of tHeoperator, one can recagf’ forn > 1
in the form

5 =38
(Si,Si, ... Si)P

Jab _ g (3.45)
X:i” (q:'liz + V)(Qi2i3 + )/) cee (qin—lin + J/)
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where we usd! x [)-matricesS?” = c¢*a’(i =1,...,N).

An important property of;-variables is that they form a set of gauge-invariant variables
equivalent to(a, ¢). In fact, one can see that

> =
= S al = d .

By
B ZV Si

The Poisson structure of the model can be conveniently rewritten in ternﬁ‘;%gof

s 1 s B pu “”
{s" ,SJ’.”} = — (8" S+ S,-“”Sj” ) — (S S)* + (S;Si)"*
qij qij ji
{ai, S_,[-lﬂ} = S_;w(sij- (3.46)
Since the HamiltoniarH; can be expressed &#; = ), Tr S;, (3.35) acquires the form
. 1
G =3 D TS SHV (gi) — V() (3.47)
Jj#i

where Tr is used to denote the trace of(an /)-matrix. Analogously, equations (3.33) and
(3.34) produce the equations of motion f§r

=1 D (SiSiVaip) = 8;SiV(gji)). (3.48)
J#i

We observe now that the Poisson structure (3.46) and the Hamiltéfjsare invariant
under the transformation§ — Q~1S,Q, whereQ € GL(l, C). These transformations are
generated by/s”.

Thus, we see that the Hamiltonian formalism of the rational spin RS model can
be equivalently presented in terms of eith@r, c)- or S;-variables. The definition of
¢! = ;(b*UP); implies that they contain the variables conjugated;to However, we
cannot identify them withP; since the latter are not gauge-invariant. The gauge-invariant
momentumP, can be defined aB; = ui‘lP,-t,». Computing the Poisson brackets Bf, one
gets that{P;, P;} = 0 and{g;, P;} = §;; P,.

Recalling that the invariant-operator has the fornk = t=17-1U P¢, it can be written
asL = WP, whereW is a gauge-invariant variable

W =+tTUu.

Then it is easy to see thd¥V belongs to the Frobenius group, i.e. it obeys the condition
We=c¢e

1
(We), = ;wlT—l),-kUkm(U—la“)m = t—i(T—la“x =1 (3.49)

Just as it was for the spinless RS model, the Poisson brackd¥faroincides with the
Sklyanin bracket

(W1, Wa} = [r12, W1W5]. (3.50)
On P, the variableW acquires the form
a%b%
Wi = L (3.51)
! Xa: gij +v

whereb? = c? P,
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Since the variablea¢ obey the constrainty_, af = 1 for anyi, condition (3.49)
implies thatb{ are also not arbitrary but subject to the constraints

Z Z (3.52)

q,,+)f

for anyi. Therefore, the number of independent spin variablesMg/ 2- 1). In terms of
these variables the Poisson structureéPpflooks as follows

{9i. P} = 6;; P {gi, af} = 0= {qg;, b}

1
{P.a%) = —(@f —a)P,
qij

1 1
{P,,b;*}—< - Wi+ b"‘+8,,Zq—bﬁ>P
n#i Ini

{a?, af} = qi(a aﬂ +a lﬁ ao‘aﬁ aj‘af)
t
{62, b7} =8, (b — b + (b“b"‘ bibY) + 8 > i(bfb“ beb’)
n#i

{af, b} = —5""W;; + a;vw,-j (3.53)
where W is given by (3.51). One should point out that the structure (3.53) is Poisson
only due to the constraints imposed on the spin variables. Therefore, the rational spin RS
model provides a new realization of the Poisson relations (3.50) as well ds-diperator
algebra (3.25).

Now we discuss the problem of generalizing the found Poisson structure for the spin
rational RS model to the trigonometric case.

Relying on the fact that in both spin and spinless cased.tbperator algebras may be
the same, one can easily derive the trigonometric analogue of the Poisson bracket (3.31)
for the variablesf;;. It follows from the results of [17] that the trigonometric RS model
can be described by the-operator algebra (3.25), where this time theatricesr, v and
7 are given by

r=Y Ej®Ej;+ Y coth(g))E; ® Ej; + ) _coth(gi)Ei; ® Eji (3.54)
ij i#j i#]
i elii
—  E,®E; ——Ej; ®FE;
; sinh(gy) 5T Z < sinh(g;;) " ® Fu
i
= Z Eii ® E;i + Y coth(gi)) Eii ® Ej; — Z SiT(qii)Ei,- ® Ej; (3.55)
i#j i#] ‘
=— Z Ei; ® Eji + Y _ coth(qi))(Ei; ® Ej; — Eij ® Ej;). (3-56)
i#]

For the sprnless trigonometric RS model theoperator satisfying (3.25) is of the form
> s
=Y —————CEj;
7~ sinh(g;; +v) Y

wherec; are some functions of dynamical variables. It is natural to assume that in the spin
case the corresponding-operator has the form

efliitv
= —————fi: E;;
X,: sinnig; + )75
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then the Poisson relations fgf; follow immediately from theL-operator algebra (3.25)

{fij> fu} = (coth(g;x) + coth(g;;) + coth(gy;) + coth(g;)) fij fu
+(coth(gix) + coth(g;;) + coth(gx; + v) — coth(qi + ¥)) fi fi;
+(coth(qw) + coth(gi; + ¥)) fij fu + (coth(g;x) — coth(g;; + ) fij fir
+(coth(gx;) — coth(gk; + ¥)) fij fiu + (coth(gi) + coth(qi; + ¥)) fij fu
(3.57)

and they look like a trigonometric generalization of (3.31).

Now one can easily verify that the equations of motion fgrare given by (3.36) with
the potentialV (¢) = coth(g) — coth(g + ) and with a change of the overall factof)1 by
€’ /(sinh(y)). On the other hand, these equations follow from equations (3.38) and (3.39).
The problem of describing the Poisson structure of the trigonometric spin RS model could
be completely solved if one found such Poisson brackets for the varialbledc that could
induce the ones (3.57) fof;;. A straightforward generalization of equations (3.21)—(3.24)
to the case at hand by replacing(4;;) by coth(g;;) fails in this regard so at the moment
we cannot offer a solution of the problem.

4. Euler—Calogero—Moser model

We start this section by discussing the degeneration of the spin RS system to the rational
ECM model. For this purpose we rescale Bg= p; — ¢p; andg; — (1/¢)g;, and
consider the limit: — 0. The constraint (3.49) implies that in this limit

Z a"‘b"‘ S,‘,‘ =Yy (458)
and W;; has the following expansion
Wij =8 +e(l— 5,,) — &8y Z == +o(e)

k#i ik

whereS;; = >, a;b;. The corresponding expansion of tiieoperator produces in the
first-order ine the L-operatorL of the rational ECM model

Sik
ﬁ,‘j =8ij(pi_z >+(1_811) (459)
ki qij
In the limit ¢ — 0 the Poisson structure (3.53) reduces to
{9i. pj} = &i; {gi, a7} = 0={q;, b}
1
{pi,aj} = —(af —a))
’ qij
o Sik o 1,
(P b} =8, == —(1- &,) —b +8; b
iz ik 9ij  4ij i Ini
{a,‘.x aﬂ} =
(b, b} = sijaf-“ —b)

17 j
{a?, b} = —59Ps;; + a%s;; (4.60)

i)
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and by introducing new momenta
Sik
Pi =Di — Z =
ki qik
one can check that they have vanishing Poisson bracketsaftitind b¢. The L-operator
L turns into the standard one used in the description of the ECM system [5-8]

Sij

Lij=38ijpi +(1— 5:’,’)#- (4.61)
v

To make a contact with the usual description of the ECM system we intrddigairs of

canonical variables{a, bf} = —4;;6°F. Then the invariant variables? and bf with the

Poisson algebra (4.60) can be realized as

o

a:
a = — by =b'Y al.
IB 1 1 1

Zﬂai B

It is interesting to note that the Poisson algebra of the variaBlesoincides with the

defining relations of the Frobenius Lie algebra
{Sij, Sut = 6u(Sij — Skj) + 8j(Skj — Sij) + 8k (Sit — Swr) (4.62)
and these relations are compatible with the constr8int= y.

The appearance of the Frobenius spin variables in the rational ECM model is not
accidental. In fact, the same phenomenon takes place for the general elliptic ECM model.
To elucidate this fact we recall that the elliptic ECM system is described by the Hamiltonian
H = %Zi pl? - %Zi# SiiS;iV(qij), whereV(g;;) = P(x) is the Weierstras®-function
and S;; are the spin variables defined by (2.7) and having the Poisson bracket

{Sij, Sk} = 81 Sit — 81 Skj-
The model is described by thie-operator [8]
L= Z(Pi +¢(@)Si)Ei + Z D(z, qij)Sij Eij
i i#]
where®(z, ¢) = (o(z + q))/(0(z)a(g)). This L-operator satisfies the Poisson algebra
{L1(2), L2(w)} = [r12(z, w), L1(2)] — [r21(w, 2), L2(w)]
0]
+;%¢(Z—w,%1‘)(5ﬁ — Sj))Eij ® Eji (4.63)
with the dynamicak-matrix
ri2(z, w) = ¢z —w) Z Eii ® Eii + Z Q(z—w,qi)E; ® Eji.  (4.64)
i i#]
Due to the last term in (4.63) the model is not integrable. However, the Hamiltonian is
invariant under the symmetey — k;a;, b; — (1/k;)b; generated bys;;. The integrability
is obtained on the reduced spafe= constant. As in the case of the RS system, to perform
the reduction we define the gauge-invaridanbperatorL = tLt~* with #;; = 8;; >, a® or
explicitly

L= Z(Pi + (@) E; + Z ®(z, gij)Sij Eij (4.65)
i i#]
where the gauge-invariant spin variables appear as
a%®
Sij — Si Za J

I
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computing the Poisson bracket 8§f;, we find that it precisely coincides with (4.62).
Now it is easy to establish that the Poisson algebra ofltheperator (4.65) has the
form

{L1(2), La(w)} = [r12(z, w), L1(2)] — [raa(w, 2), L2(w)]

where a matrixr literally coincides with ther-matrix of the elliptic Calogero—Moser
model [23, 24]

Ma(z, w) = (C(z — w) + L (W) Y Eii ® Eij

+ Z P(z—w,qi))Ei;  Eji + Z d(w, g;;)E;; Q Ejj.
i#] i#]
Thus, the ECM model corresponds to a representation of_toperator algebra of the
Calogero—Moser model that depends not onlygprand p; but also on the additional spin
variablesS;; with the bracket (4.62). As to the spectral-dependewoperator of the spin RS
model, this does not satisfy tHeoperator algebra found for the spinless case [25, 26]. The
algebra is quadratic that fixes the form of the correspondiraperator almost uniquely.

5. Conclusion

In this paper we have presented a detailed description of the Poisson structure for the rational
spin RS model by using the Hamiltonian reduction technique. The results obtained cannot
be extended to the trigonometric spin RS model in a straightforward manner. It is shown
in [12] that the trigonometric RS model can be obtained by means of the Poisson reduction
technique applied to the Heisenberg douBbleassociated withG = GL(N, C). Therefore,

one may hope to describe the Poisson structure of the trigonometric spin RS model in the
same fashion starting from the phase spBAce G*, whereG* is a Poisson—Lie group dual

to G.

As is known [5] the rational ECM model possesses the current algebra symmetry and, as
we have established, the same symmetry occurs in the rational spin RS model. On the other
hand, the trigonometric ECM model has Yangian symmetry. Thus, for the trigonometric
spin RS model it is natural to expect the appearance of Yangian symmetry.

The elliptic case is much more involved since at the moment a reduction procedure
leading to the elliptic spin RS model is unknown.

Another interesting open problem is to quantize the spin RS models. In the rational
case one could use the quantum Hamiltonian reduction procedure developed in [16].
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