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Abstract. The Hamiltonian structure of the spin generalization of the rational Ruijsenaars–
Schneider model is found by using the Hamiltonian reduction technique. It is shown that the
model possesses current algebra symmetry. The possibility of generalizing the obtained Poisson
structure to the trigonometric case is discussed and degeneration to the Euler–Calogero–Moser
system is examined.

1. Introduction

Recently a spin generalization [1] of the elliptic Ruijsenaars–Schneider model [2, 3] (spin
RS model) was introduced as a dynamical system describing the pole evolution of the
elliptic solutions of the non-Abelian two-dimensional (2D) Toda chain§. Equations of
motion proposed for the model generalize the ones for the Euler–Calogero–Moser (ECM)
system [5–9], which is an integrable system ofN particles with internal degrees of freedom
interacting by a special pairwise potential.

An important tool for dealing with classical integrable systems and especially for
quantizing them is the Hamiltonian formalism. Although equations of motion defining the
spin RS model can be integrated in terms of Riemann theta-functions, the question about
their Hamiltonian form remains open. The aim of the present paper is to give a partial
answer to this question, which lies in constructing the explicit Hamiltonian formulation for
the rational spin RS model.

Our construction is based on the Hamiltonian reduction procedure acknowledged as the
unifying approach to dynamical systems of Calogero or Ruijsenaars type [10–19]. In this
approach one starts with a large initial phase space and a simple Hamiltonian possessing
a symmetry group. By then factorizing the corresponding motion by this symmetry one is
left with a non-trivial dynamical system defined on a reduced phase space. In particular,
the rational RS model and the trigonometric Calogero–Moser system appear in this way if
one uses the cotangent bundleT ∗G over a Lie groupG as the initial phase space [12].

A natural generalization of this approach allowing us to include spin variables consists
in replacingT ∗G by a more general phase spaceP that we choose to beT ∗G×J ∗, where
J ∗ is a dual space to the Lie algebraJ of G. Considering onP a special HamiltonianHR
and performing the Hamiltonian reduction byG-action, we obtain the Poisson structure of
the rational spin RS model.

† E-mail address: arut@genesis.mi.ras.ru
‡ E-mail address: frolov@genesis.mi.ras.ru
§ The trigonometric spin RS model can also be related to affine Toda solitons [4].
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Let us briefly describe the content of the paper and the results obtained. For simplicity,
we restrict ourselves to the case ofG = GL(N,C). In section 2 we define onP two
dynamical systems governed by HamiltoniansHC andHR and show that the corresponding
integrals of motion combine into generators of the Yangian, and the current algebra,
respectively. Since all these integrals are gauge-invariant, the corresponding symmetries
will survive after the reduction.

As is known [14] the dynamical system on the reduced phase space corresponding to
HC is the trigonometric ECM model. This immediately reproduces the result found in [7, 8]
that the model possesses Yangian symmetry.

Section 3 is devoted to the rational spin RS model. First, we introduceG-invariant spin
variables that after solving the moment map equation can be identified with coordinates on
the reduced phase spacePr . Equations of motion for dynamical variables ofPr produced
by HR coincide with the ones introduced in [1] for the rational case. That is the way we
obtain an explicit Hamiltonian formulation of the spin RS model. The Poisson structure of
the model is found to be rather non-trivial and admits at least two equivalent descriptions in
terms of different phase variables. Moreover, it depends on a parameterγ being a coupling
constant of the model.

It turns out that the spin RS model admits a (spectral-independent)L-operator (Lax
matrix) that satisfies the sameL-operator algebra as does the corresponding spinless model.
We also show that the Hamiltonian reduction provides an alternative way of solving
equations of motion without using spectral curves. A similar method of integrating equations
of motion of the spin RS model is used in [20].

Finally, we present an explicit expression for generators of the current algebra via phase
variables of the spin RS model and define the gauge-invariant momentum variables.

In section 4 degeneration of the rational spin RS model to the ECM system is examined.
An interesting feature we come across here is the appearance of spin variables obeying the
defining relations of the Frobenius Lie algebra. We observe that the general elliptic ECM
system can also be formulated in terms of Frobenius spin variables.

2. Current and Yangian symmetries

In this section we construct representations of the Yangian and current algebras related to the
cotangent bundleT ∗G over the matrix groupG = GL(N,C) and describe their connection
to the ECM and the spin RS models respectively.

Consider the following manifoldP = T ∗G × G∗, whereG∗ is a dual space to the Lie
algebraG = Mat(N,C) of G. Due to the isomorphismG∗ ≈ G we can parametrize an
element fromG∗ by a matrixS ∈ G. The spaceT ∗G is naturally isomorphic toG∗ × G
and we parametrize it by pairs(A, g), whereA ∈ G and g ∈ G. The algebra of regular
functions onP is supplied with a Poisson structure, which can be written in terms of the
variables(A, g, S) as follows

{A1, A2} = 1
2[C,A1− A2] (2.1)

{A1, g2} = g2C {g1, g2} = 0 (2.2)

{S1, g2} = {S1, A2} = 0 (2.3)

{S1, S2} = − 1
2[C, S1− S2] (2.4)

where we use standard tensor notation andC =∑i,j Eij ⊗Eji is the permutation operator.
The Poisson structure is invariant under the following action of the groupG

A→ hAh−1 g→ hgh−1 S → hSh−1 (2.5)
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and so we refer to (2.5) as gauge transformations. The moment map of this action is of the
form

µ = gAg−1− A+ S. (2.6)

The simplest gauge-invariant Hamiltonians areHC = trA2 andHR = tr g.
The Poisson bracket of the variablesSij can be realized by using 2N l-dimensional

vectorsai, bi which form lN -pairs of canonically conjugated variables

{aαi , bβj } = −δij δαβ

wherei, j = 1, . . . , N andα, β = 1, . . . , l. Supposing the matrix elements ofS are

Sij =
∑
α

aαi b
α
j (2.7)

one recovers the Poisson bracket (2.4). Obviously, under gauge transformations the variables
a andb transform in the following way

aα → haα bα → bαh−1

where we regardaα as a column andbα as a row.
The variablesa andb allow one to construct a lot of gauge-invariants Poisson commuting

with HC or with HR.
First, we consider a family of integrals of motion forHC : Iαβn = trAnSαβ , where for

any α and β the matrixSαβ has the entriesSαβij = aαi b
β

j . In fact, the integralsIn form
a representation of the classical Yangian. To see this, one can introduce the following
generating functionT αβ(z) of In

T αβ(z) = δαβ + tr
1

z− AS
αβ

then, by using the Poisson bracket for the variablesSαβ

{Sαβ1 , S
µν

2 } = C12(δ
βµSαν2 − δανSµβ1 )

and performing simple calculations, one obtains the Yangian algebra

{T1(z), T2(w)} = [r(z− w), T1(z)T2(w)]. (2.8)

Here we regardT (z) as an(l × l)-matrix with entriesT αβ(z), and r(z − w) is a rational
solution of the classical Yang–Baxter equation

r(z− w) = K

z− w
whereK is the permutation operator acting inCl ⊗ Cl .

A well known property of the Yangian is the existence of the involutive subalgebra
generated byIk(z) = tr T (z)k.

For the HamiltonianHR one can choose the following family of integrals of motion
J
αβ
n = tr gnSαβ . Introducing the formal generating functionJ (z)

J αβ(z) =
∞∑

n=−∞
J αβn z−n−1

one can easily show thatJ (z) satisfies the current algebra relations

{J1(z), J2(w)} = [K, J2(w)]δ

(
z

w

)
(2.9)
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where

δ

(
z

w

)
= 1

z

∞∑
n=−∞

(
z

w

)n
is the formalδ-function.

It is obvious that trJ (z)n are central elements of the current algebra. In addition, the
current algebra admits an involutive family of integrals of motion polynomial ing andS.
It is constructed asJ+n (z) = tr J+(z)n, whereJ+(z) = ∑∞n=0 Jnz

−n−1. The involutivity is
a consequence of the algebra satisfied byJ+(z)

{J+1 (z), J+2 (w)} = [r(z− w), J+1 (z)+ J+2 (w)] (2.10)

and it is well known that the Yangian (2.8) is a deformation of (2.10).
The dynamical systems governed by the HamiltoniansHC andHR are trivial. However,

factorizing the initial phase spaceP by the action of a symmetry group, one obtains non-
trivial systems defined on the reduced phase spacePr . In particular, to obtain the ECM and
the spin RS models one should fix the moment map as [21]

gAg−1− A+ S = γ I (2.11)

whereγ is a complex number being identified with a coupling constant. Then by solving
this equation modulo the action of the gauge groupG (G coincides with the isotropy group
of (2.11), i.e. (2.11) is a set of first-class constraints), one obtains the reduced phase space.
The dynamical systems onPr corresponding to the HamiltoniansHC andHR are identified
with the ECM, and the spin RS models, respectively.

Since the generators of the Yangian and current algebras are gauge-invariant, we
conclude that the ECM model possesses Yangian symmetry whereas the spin RS model
has current symmetry. As was mentioned in the introduction this result for the ECM model
was obtained in [7, 8] by exploiting an explicitL-operator describing the model.

3. Rational spin RS model

In this section we present the Hamiltonian formulation of the spin RS model by considering
the reduction of the phase spaceP by the action ofG. Given the moment map, the space
of functions on the reduced phase spacePr can be identified with the space FunGP of
G-invariant functions onP restricted to the surface (2.11) of the constant moment level. A
choice of an appropriate basis in FunGP and calculation of the induced Poisson structure
make the description ofPr explicit.

To construct a basis in FunGP we first note that any semisimple element ofG can be
diagonalized by a gauge transformation

A = TQT −1 (3.12)

whereQ is a diagonal matrix with gauge-invariant entriesqi 6= qj . By using the action of
the Weyl group we fix the order ofqi . For a givenA, the matrixT in (3.12) is uniquely
defined by being an element of the Frobenius group, i.e. it satisfies the condition

T e = e (3.13)

wheree is anN -dimensional column with allei = 1. Such a choice forT is known [16]
to be relevant for the description of the RS model.

GivenA andg, we can diagonalize a matrixA′ = gAg−1 = UQU−1 with the help of an
elementU such thatUe = e. This introduces a useful parametrization forg: g = UPT −1,
whereP is some diagonal matrix.
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Under gauge transformation (2.5) matricesT and U transform as follows toT →
hT h[T ] and U → hUh[U ] where h[T ] and h[U ] are the diagonal matricesh[T ]i =
(T −1h−1e)i andh[U ]i = (U−1h−1e)i .

We next introduce the diagonal matricestij = tiδij anduij = uiδij with entries

ti =
∑
α

(T −1aα)i ui =
∑
α

(U−1aα)i (3.14)

which transform under gauge transformation (2.5) in the following way

ti → h[T ]−1
i ti ui → h[U ]−1

i ui

and we uset to define theG-invariant spin variables

aαi = t−1
i (T −1aα)i cαi = ti(bαUP )i.

Note thataαi are not arbitrary but satisfy the constraints
∑

α a
α
i = 1 for anyi. The relevance

of this definition will be clarified later.
To calculate the Poisson algebra ofa andc one needs to use the one for(T , U, P,Q)-

variables. In [16] it was proved that the standard Poisson structure (2.1) and (2.2) onT ∗G
rewritten in terms of(T , U, P,Q)-variables has the form

{T1, T2} = T1T2r12 {U1, U2} = −U1U2r12 (3.15)

{T1, P2} = T1P2r̄12 {U1, P2} = U1P2r̄12 (3.16)

{T1,Q2} = {U1,Q2} = {P1, P2} = {T1, U2} = 0 (3.17)

{Q1,Q2} = 0 {Q1, P2} = P2

∑
i

Eii ⊗ Eii. (3.18)

Herer12 is anN -parametric solution of the classical Yang–Baxter equation

r12 =
∑
i 6=j

1

qij
Fij ⊗ Fji (3.19)

whereFij = Eii −Eij is a basis of the Frobenius Lie algebra and the matrixr̄12 is given by

r̄12 =
∑
i 6=j

1

qij
Fij ⊗ Ejj . (3.20)

Note that (3.18) implies thatqi andpi = logPi are canonically conjugated variables.
With formulae (3.15)–(3.18) to hand we first calculate

{ti , tj } = − 1

qij
(ti − tj )2 {ui, uj } = 1

qij
(ui − uj )2 {ti , uj } = 0

and then the Poisson brackets of the invariant spins

{aαi ,aβj } =
1

qij
(aαi a

β

j + aαj aβi − aαi aβi − aαj aβj ) (3.21)

{cαi , cβj } =
1

qij
(cαi c

β

j + cαj cβi )+ cβj Lji −Lijcαi (3.22)

{cαi ,aβj } = δαβLji − aβj Lji +
1

qij
cαi (a

β

i − aβj ) (3.23)

{aαi , cβj } = −δαβLij + aαi Lij +
1

qij
c
β

j (a
α
j − aαi ). (3.24)

The Poisson structure of invariant spins is not closed since it involves another gauge invariant
objectL : Lij = t−1

i Lij tj , whereL = T −1gT . In [16] L was identified with theL-operator
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of the rational RS model. Analogously,L will be called theL-operator of the spin RS
model. The relevance of this definition will be justified later. Note that in equations (3.21)–
(3.24) and in later formulae it is assumed that if some denominator becomes zero, the
corresponding fraction is omitted.

Calculating the Poisson algebra forL with the help of equations (3.15)–(3.18), we
obtain that it coincides with the one forL, namely

{L1,L2} = r12L1L2+L1L2r̂12+L1r̄21L2−L2r̄12L1 (3.25)

where r̂12 = r̄12 − r̄21 − r12 is a constant solution of the Gervais–Neveu–Felder
equation [21, 22]. Therefore, theL-operator algebra for the spin RS model and the one
for the RS model without spins are the same.

To complete the description of the Poisson algebra of invariant spins we find the Poisson
brackets ofL with a andc:

{aαi ,Lkl} =
1

qik
(aαi − aαk )Lkl −

1

qik
(aαi − aαk )Lil −

1

qil
(aαi − aαl )Lkl (3.26)

{cαi ,Lkl} =
1

qil
cαi Lkl +

1

qil
cαl Lki −

1

qik
cαi Lkl +

1

qik
cαi Lil +LliLkl −LkiLkl . (3.27)

Thus, the Poisson algebra of gauge-invariant variablesa, c andL is closed.
We remark that the choice of gauge-invariant spins and theL-operator is not unique.

In particular, one could useωi =
∑

α(b
αT )i to define other gauge-invariant spins

âαi = ωi(T
−1aα)i , ĉαi = ω−1

i (b
αUP )i and theL-operator: L̂ij = ωiLijω

−1
j . One can

verify that this set of gauge-invariant variables satisfies a different algebra.
The next step consists in restricting the Poisson algebra (3.21)–(3.27) to the surface

(2.11) of the constant moment level. Diagonalizing the variableA, we find that
equation (2.11) is equivalent to

LQ−QL− γL = −T −1ST L. (3.28)

Multiplying (3.28) by the diagonal matrixt from the right and byt−1 from the left, and
taking into account thatL = T −1gT = T −1UP , we rewrite (3.28) in terms of gauge-
invariant variables

LQ−QL− γL = −t−1T −1SUP t (3.29)

since(t−1T −1SUP t)ij =
∑

α a
α
i c

α
j . Thus, we can solve equation (3.29) with respect toL.

The solution is given by

L =
∑
ij

fij

qij + γ Eij (3.30)

where we introducefij =
∑

α a
α
i c

α
j . Now the reduction of the Poisson structure (3.21)–

(3.27) on the surface of (3.28) amounts to the substitution on the right-hand side of (3.21)–
(3.27) of the entries of theL-operator (3.30). The consistency of the reduced Poisson
structure can also be checked by direct calculations. To this end one must first find the
Poisson algebra offij -variables

{fij , fkl} =
(

1

qik
+ 1

qjl
+ 1

qkj
+ 1

qli

)
fijfkl +

(
1

qki
+ 1

qil + γ
)
fijfil

+
(

1

qik
+ 1

qjl
+ 1

qkj + γ −
1

qil + γ
)
filfkj +

(
1

qjk
− 1

qjl + γ
)
fijfjl

+
(

1

qki
− 1

qkj + γ
)
fkjfkl +

(
1

qil
+ 1

qlj + γ
)
fljfkl (3.31)
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and {fij , qk} = −fij δkj . Then by using the representation (3.30) forL one does recover
theL-operator algebra (3.25).

Now we proceed with describing the dynamics onPr . The invariant HamiltonianHR
acquires onPr a form HR = trL = (1/γ )

∑
i fii . This Hamiltonian and the Poisson

structure onPr produce the following equations of motion

q̇i = Lii = 1

γ
fii (3.32)

ȧαi = −
∑
j 6=i

1

qij
(aαi − aαj )Lij = −

1

γ

∑
j 6=i
(aαi − aαj )fijV (qij ) (3.33)

ċαi =
∑
j 6=i

1

qij
(cαi Lij + cαj Lji) =

1

γ

∑
j 6=i
(cαi fijV (qij )− cαj fjiV (qji)) (3.34)

where we introduce the potentialV (qij ) = 1/(qij ) − 1/(qij + γ ). Differentiating q̇i and
taking into account equations (3.33) and (3.34), one gets

q̈i = 2
∑
j 6=i

1

qij
LijLji = 2

∑
j 6=i

1

qij
LijLji = 1

γ 2

∑
j 6=i

fij fji(V (qij )− V (qji)) (3.35)

and equations of motion forfij

ḟij = 1

γ

∑
k 6=i,j

V (qkj )fikfkj − V (qik)fikfkj + V (qik)fikfij − V (qjk)fjkfij . (3.36)

It follows from equations (3.32) and (3.36) that the equation of motion forL can be written
in the Lax formL̇ = [L,M ] with M = ∑

i 6=j (1/qij )LjiFij . However, this equation is
not equivalent to equations (3.32) and (3.36).

In paper [1] the spin generalization of the elliptic RS model was introduced. The
generalized model is a system ofN particles with coordinatesqi , each particle having
internal degrees of freedom described by thel-dimensional vectoraαi and thel-dimensional
vectorcαi . The equations of motion generalize the ones for the ECM system

q̈i =
∑
j 6=i

fij fji(V (qij )− V (qji)) (3.37)

ȧi =
∑
j 6=i

ajfijV (qij )− λiai (3.38)

ċi = −
∑
j 6=i

cjfjiV (qji)+ λici (3.39)

whereV (q) = ζ(q)− ζ(q + γ ) andλi(t) are arbitrary functions oft andζ(q) denotes the
Weierstrass zeta-function. Equations of motion (3.37)–(3.39) are invariant under rescaling

ai → kiai ci → 1

ki
ci .

Introducing the invariant variableŝaαi = (
∑

α a
α
i )
−1aαi andĉαi = (

∑
α a

α
i )c

α
i , and calculating

from (3.38) and (3.39) the equations of motion forâαi and ĉαi , one discovers that allλi drop
out and the equations of motion coincide with (3.33) and (3.34) with the changeâαi → aαi ,
ĉαi → (1/γ )cαi and with substitution ofV (q) for its rational analogue(1/q − 1/(q + γ )).
To present equations (3.37) in the Lax form, in paper [1] a spectral-dependentL-operator
L(z) was suggested. One can see that in the rational caseL(z) coincides withL in the
limit z → ∞. Thus, we obtain the Hamiltonian formulation of the spin generalization of
the rational RS model.
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Now we show how the equations of motion (3.35)–(3.34) can be solved in terms of the
factorization problem (see also [2, 11, 20]). The HamiltonianHR induces onP equations
of motion

ġ = 0 Ȧ = g Ṡ = 0

that can be easily integrated;A(t) = gt + A0, g(t) = constant andS(t) = constant. We
suppose that the positions of particles att = 0 are given byqi lying on Pr . It means that
A(t) = gt +Q. Since for anyt the point(A(t), g(t), S(t)) satisfies the constraint (2.11)
one finds thatg should be identified with theL-operatorL0 at t = 0.

Let us now show that the solution of (3.35) is given by the diagonal factorQ(t) in the
decomposition ofA(t)

A(t) = L0t +Q = T (t)Q(t)T −1(t) T (t)e = e. (3.40)

In [16] it is proved that

δTij

δAmn
=
∑
a 6=j

1

qja
(TiaTnjT

−1
am + TijTnaT −1

jm ) (3.41)

δqi

δAmn
= TniT −1

im . (3.42)

Using these formulae, we find

q̇i =
∑
mn

δqi

δAmn

dAmn

dt
= (T −1gT )ii(t) = Lii(t)

and differentiatingq̇i once again, one gets

q̈i = L̇ii = [T −1gT , T −1Ṫ ]ii (3.43)

where

(T −1Ṫ )ij = − 1

qij
Lij + δij

∑
a 6=j

1

qja
Lja. (3.44)

Substituting equation (3.44) into equation (3.43), we obtain equation (3.35).
As to the spin variables their equations of motion are automatically solved if one knows

the factorT (t) in the decomposition (3.40). Indeed, if we defineãαi (t) = (T −1(t)aα)i then

˙̃aαi = −
∑
j 6=i

1

qij
(ãαi − ãαj )Lij

and for the invariant spinaαi = (1/ti)ãαi we obtain equation (3.33). Solution of the equation
of motion for cαi is given bycαi (t) = ti(t)(bαL0T (t))i .

The integrals of motionJ αβn = tr(gnSαβ) introduced in section 2 take onPr the following
form

J αβn =
∑
ij

(Ln−1)ija
α
j c

β

i .

Substituting here the explicit form (3.30) of theL-operator, one can recastJ αβn for n > 1
in the form

J
αβ

1 =
∑
i

S
βα

i

J αβn =
∑
i1,...,in

(Si1Si2 . . . Sin )
βα

(qi1i2 + γ )(qi2i3 + γ ) . . . (qin−1in + γ )
(3.45)
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where we use(l × l)-matricesSαβi = cαi aβi (i = 1, . . . , N).
An important property ofSi-variables is that they form a set of gauge-invariant variables

equivalent to(a, c). In fact, one can see that

cαi =
∑
β

S
αβ

i aαi =
S
βα

i∑
γ S

βγ

i

.

The Poisson structure of the model can be conveniently rewritten in terms ofS
αβ

i

{Sαβi , Sµνj } =
1

qij
(S
µβ

i S
αν
j + Sανi Sµβj )− δβµ

qij + γ (SiSj )
αν + δαν

qji + γ (SjSi)
µβ

{qi, Sαβj } = Sαβj δij . (3.46)

Since the HamiltonianHR can be expressed asHR =
∑

i Tr Si , (3.35) acquires the form

q̈i = 1

γ 2

∑
j 6=i

Tr(SiSj )(V (qij )− V (qji)) (3.47)

where Tr is used to denote the trace of an(l× l)-matrix. Analogously, equations (3.33) and
(3.34) produce the equations of motion forSi

Ṡi = 1

γ

∑
j 6=i
(SiSjV (qij )− SjSiV (qji)). (3.48)

We observe now that the Poisson structure (3.46) and the HamiltonianHR are invariant
under the transformationsSi → �−1Si�, where� ∈ GL(l,C). These transformations are
generated byJ αβ0 .

Thus, we see that the Hamiltonian formalism of the rational spin RS model can
be equivalently presented in terms of either(a, c)- or Si-variables. The definition of
cαi = ti(b

αUP )i implies that they contain the variables conjugated toqi . However, we
cannot identify them withPi since the latter are not gauge-invariant. The gauge-invariant
momentumPi can be defined asPi = u−1

i Pi ti . Computing the Poisson brackets ofPi , one
gets that{Pi ,Pj } = 0 and{qi,Pj } = δijPj .

Recalling that the invariantL-operator has the formL = t−1T −1UP t , it can be written
asL =WP , whereW is a gauge-invariant variable

W = t−1T −1Uu.

Then it is easy to see thatW belongs to the Frobenius group, i.e. it obeys the condition
W e = e

(W e)i =
∑
k,m

(t−1T −1)ikUkm(U
−1aα)m = 1

ti
(T −1aα)i = 1. (3.49)

Just as it was for the spinless RS model, the Poisson bracket forW coincides with the
Sklyanin bracket

{W1,W2} = [r12,W1W2]. (3.50)

On Pr the variableW acquires the form

Wij =
∑
α

aαi b
α
j

qij + γ (3.51)

wherebαi = cαi P−1
i .
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Since the variablesaαi obey the constraints
∑

α a
α
i = 1 for any i, condition (3.49)

implies thatbαi are also not arbitrary but subject to the constraints∑
α

aαi
∑
j

bαj

qij + γ = 1 (3.52)

for any i. Therefore, the number of independent spin variables is 2N(l − 1). In terms of
these variables the Poisson structure ofPr looks as follows

{qi,Pj } = δijPj {qi,aαj } = 0= {qi, bαj }

{Pi ,aαj } =
1

qij
(aαi − aαj )Pi

{Pi , bαj } =
(
δij −Wij + 1

qij
bαj + δij

∑
n6=i

1

qnj
bαn

)
Pi

{aαi ,aβj } =
1

qij
(aαi a

β

j + aαj aβi − aαi aβi − aαj aβj )

{bαi , bβj } = δij (bβi − bαi )+
1

qij
(bαj b

β

i − bβj bαi )+ δij
∑
n6=i

1

qin
(bβnb

α
i − bαnbβi )

{aαi , bβj } = −δαβWij + aαiWij (3.53)

whereW is given by (3.51). One should point out that the structure (3.53) is Poisson
only due to the constraints imposed on the spin variables. Therefore, the rational spin RS
model provides a new realization of the Poisson relations (3.50) as well as theL-operator
algebra (3.25).

Now we discuss the problem of generalizing the found Poisson structure for the spin
rational RS model to the trigonometric case.

Relying on the fact that in both spin and spinless cases theL-operator algebras may be
the same, one can easily derive the trigonometric analogue of the Poisson bracket (3.31)
for the variablesfij . It follows from the results of [17] that the trigonometric RS model
can be described by theL-operator algebra (3.25), where this time ther-matricesr, r̄ and
r̂ are given by

r =
∑
ij

Eij ⊗ Eji +
∑
i 6=j

coth(qij )Eii ⊗ Ejj +
∑
i 6=j

coth(qij )Eij ⊗ Eji (3.54)

−
∑
i 6=j

eqij

sinh(qij )
Eij ⊗ Ejj +

∑
i 6=j

eqij

sinh(qij )
Ejj ⊗ Eij

r̄ = −
∑
i

Eii ⊗ Eii +
∑
i 6=j

coth(qij )Eii ⊗ Ejj −
∑
i 6=j

eqij

sinh(qij )
Eij ⊗ Ejj (3.55)

r̂ = −
∑
ij

Eij ⊗ Eji +
∑
i 6=j

coth(qij )(Eii ⊗ Ejj − Eij ⊗ Eji). (3.56)

For the spinless trigonometric RS model theL-operator satisfying (3.25) is of the form

L =
∑
ij

eqij+γ

sinh(qij + γ )cjEij

wherecj are some functions of dynamical variables. It is natural to assume that in the spin
case the correspondingL-operator has the form

L =
∑
ij

eqij+γ

sinh(qij + γ )fijEij
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then the Poisson relations forfij follow immediately from theL-operator algebra (3.25)

{fij , fkl} = (coth(qik)+ coth(qjl)+ coth(qkj )+ coth(qli))fijfkl
+(coth(qik)+ coth(qjl)+ coth(qkj + γ )− coth(qil + γ ))filfkj
+(coth(qki)+ coth(qil + γ ))fijfil + (coth(qjk)− coth(qjl + γ ))fijfjl
+(coth(qki)− coth(qkj + γ ))fkjfkl + (coth(qil)+ coth(qlj + γ ))fljfkl

(3.57)

and they look like a trigonometric generalization of (3.31).
Now one can easily verify that the equations of motion forfij are given by (3.36) with

the potentialV (q) = coth(q)− coth(q + γ ) and with a change of the overall factor 1/γ by
eγ /(sinh(γ )). On the other hand, these equations follow from equations (3.38) and (3.39).
The problem of describing the Poisson structure of the trigonometric spin RS model could
be completely solved if one found such Poisson brackets for the variablesa andc that could
induce the ones (3.57) forfij . A straightforward generalization of equations (3.21)–(3.24)
to the case at hand by replacing 1/(qij ) by coth(qij ) fails in this regard so at the moment
we cannot offer a solution of the problem.

4. Euler–Calogero–Moser model

We start this section by discussing the degeneration of the spin RS system to the rational
ECM model. For this purpose we rescale logPi = pi → εpi and qi → (1/ε)qi , and
consider the limitε→ 0. The constraint (3.49) implies that in this limit∑

α

aαi b
α
i = Sii = γ (4.58)

andWij has the following expansion

Wij = δij + ε(1− δij )Sij
qij
− εδij

∑
k 6=i

Sik

qik
+ o(ε)

whereSij =
∑

α a
α
i b

α
j . The corresponding expansion of theL-operator produces in the

first-order inε theL-operatorL of the rational ECM model

Lij = δij
(
pi −

∑
k 6=i

Sik

qik

)
+ (1− δij )Sij

qij
. (4.59)

In the limit ε→ 0 the Poisson structure (3.53) reduces to

{qi,pj } = δij {qi,aαj } = 0= {qi, bαj }

{pi ,aαj } =
1

qij
(aαi − aαj )

{pi , bαj } = δij
∑
k 6=i

Sik

qik
− (1− δij )Sij

qij
+ 1

qij
bαj + δij

∑
n6=i

1

qnj
bαn

{aαi ,aβj } = 0

{bαi , bβj } = δij (bβi − bαi )
{aαi , bβj } = −δαβδij + aαi δij (4.60)
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and by introducing new momenta

pi = pi −
∑
k 6=i

Sik

qik

one can check that they have vanishing Poisson brackets withaαi andbαi . TheL-operator
L turns into the standard one used in the description of the ECM system [5–8]

Lij = δijpi + (1− δij )Sij
qij
. (4.61)

To make a contact with the usual description of the ECM system we introducelN pairs of
canonical variables:{aαi , bβj } = −δij δαβ . Then the invariant variablesaαi andbβj with the
Poisson algebra (4.60) can be realized as

aαi =
aαi∑
β a

β

i

bαi = bαi
∑
β

a
β

i .

It is interesting to note that the Poisson algebra of the variablesSij coincides with the
defining relations of the Frobenius Lie algebra

{Sij ,Skl} = δil(Sij − Skj )+ δjl(Skj − Sij )+ δjk(Sil − Skl) (4.62)

and these relations are compatible with the constraintSii = γ .
The appearance of the Frobenius spin variables in the rational ECM model is not

accidental. In fact, the same phenomenon takes place for the general elliptic ECM model.
To elucidate this fact we recall that the elliptic ECM system is described by the Hamiltonian
H = 1

2

∑
i p

2
i − 1

2

∑
i 6=j Sij SjiV (qij ), whereV (qij ) = P(x) is the WeierstrassP-function

andSij are the spin variables defined by (2.7) and having the Poisson bracket

{Sij , Skl} = δjkSil − δilSkj .
The model is described by theL-operator [8]

L =
∑
i

(pi + ζ(z)Sii)Eii +
∑
i 6=j

8(z, qij )SijEij

where8(z, q) = (σ (z+ q))/(σ (z)σ (q)). ThisL-operator satisfies the Poisson algebra

{L1(z), L2(w)} = [r12(z, w), L1(z)] − [r21(w, z), L2(w)]

+
∑
i 6=j

∂

∂qij
8(z− w, qij )(Sii − Sjj )Eij ⊗ Eji (4.63)

with the dynamicalr-matrix

r12(z, w) = ζ(z− w)
∑
i

Eii ⊗ Eii +
∑
i 6=j

8(z− w, qij )Eij ⊗ Eji. (4.64)

Due to the last term in (4.63) the model is not integrable. However, the Hamiltonian is
invariant under the symmetryai → kiai , bi → (1/ki)bi generated bySii . The integrability
is obtained on the reduced spaceSii = constant. As in the case of the RS system, to perform
the reduction we define the gauge-invariantL-operatorL = tLt−1 with tij = δij

∑
α a

α
i or

explicitly

L =
∑
i

(pi + ζ(z))Eii +
∑
i 6=j

8(z, qij )SijEij (4.65)

where the gauge-invariant spin variables appear as

Sij = Sij
∑

α a
α
j∑

α a
α
i
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computing the Poisson bracket ofSij , we find that it precisely coincides with (4.62).
Now it is easy to establish that the Poisson algebra of theL-operator (4.65) has the

form

{L1(z),L2(w)} = [r12(z, w),L1(z)] − [r21(w, z),L2(w)]

where a matrixr literally coincides with ther-matrix of the elliptic Calogero–Moser
model [23, 24]

r12(z, w) = (ζ(z− w)+ ζ(w))
∑
i

Eii ⊗ Eii

+
∑
i 6=j

8(z− w, qij )Eij ⊗ Eji +
∑
i 6=j

8(w, qij )Ejj ⊗ Eij .

Thus, the ECM model corresponds to a representation of theL-operator algebra of the
Calogero–Moser model that depends not only onqi andpi but also on the additional spin
variablesSij with the bracket (4.62). As to the spectral-dependentL-operator of the spin RS
model, this does not satisfy theL-operator algebra found for the spinless case [25, 26]. The
algebra is quadratic that fixes the form of the correspondingL-operator almost uniquely.

5. Conclusion

In this paper we have presented a detailed description of the Poisson structure for the rational
spin RS model by using the Hamiltonian reduction technique. The results obtained cannot
be extended to the trigonometric spin RS model in a straightforward manner. It is shown
in [12] that the trigonometric RS model can be obtained by means of the Poisson reduction
technique applied to the Heisenberg doubleD associated withG = GL(N,C). Therefore,
one may hope to describe the Poisson structure of the trigonometric spin RS model in the
same fashion starting from the phase spaceD×G∗, whereG∗ is a Poisson–Lie group dual
to G.

As is known [5] the rational ECM model possesses the current algebra symmetry and, as
we have established, the same symmetry occurs in the rational spin RS model. On the other
hand, the trigonometric ECM model has Yangian symmetry. Thus, for the trigonometric
spin RS model it is natural to expect the appearance of Yangian symmetry.

The elliptic case is much more involved since at the moment a reduction procedure
leading to the elliptic spin RS model is unknown.

Another interesting open problem is to quantize the spin RS models. In the rational
case one could use the quantum Hamiltonian reduction procedure developed in [16].
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